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The principle of feedback control is used in a 
wide variety of physical and engineering problems. For 
example, it can be applied in a straightforward way to 
tune the oscill ation phase of a harmonic oscill ator in order 
to achieve a desired synchronization. An intriguing and 
fundamental question is whether continuous feedback can 
be used to control quantum systems; for instance, if it is 
possible or not to tune the phase of quantum (Rabi) 
oscill ations of a two-level system (qubit).  

At first sight the quantum feedback seems to be 
impossible because according to the “orthodox” collapse 
postulate [1] the quantum state is abruptly destroyed by 
the act of measurement. However, in a typical solid-state 
realization the measurement is not instantaneous but 
rather a continuous process (because of weak coupling 
and finite noise of a detector), hence, the collapse 
postulate is not directly applicable. The possibili ty of 
continuous feedback control of an individual qubit has 
been recently shown theoretically [2] using the Bayesian 
formalism [3,4] developed to describe the evolution of an 
individual quantum system. (The conventional ensemble-
averaged formalism [5] cannot be used to describe 
quantum feedback.) The goal of the present work is a 
more detailed study of the continuous feedback control of 
quantum oscill ations of a qubit state.  

 As a particular example we consider a qubit 
based on the double-quantum-dot occupied by a single 
electron. The qubit state (electron position in either first 
or second dot) is continuously measured by a weakly 
coupled Quantum Point Contact (QPC) nearby, so that the 
noisy QPC current I(t) contains the information on the 
qubit evolution. Even though detector signal I(t) does not 
have one-to-one correspondence with the diagonal 
elements of the qubit density matrix ρij(t) (this would 
contradict uncertainty principle), the evolution of ρ can be 
monitored exactly plugging I(t) into Bayesian equations.  
Then the deviation from the desired qubit evolution can 
be continuously compensated by the feedback loop, which 
controls the energy asymmetry ε and/or the tunneling 
strength H of the qubit [the qubit Hamiltonian is 
HQB=(ε/2)(c1

+c1 – c2
+c2)+H(c1

+c2 + c2
+c1)]. 

We have analyzed the operation of such quantum 
feedback loop using Monte-Carlo simulation of the 
measurement process [2]. Figure 1 shows the numerically 
calculated correlation function KI(τ)≡<I(t)I(t+τ)> of the 
detector current for three values of the dimensionless 
feedback strength: F=0.0, 0.03, and 0.3. In this example 
the feedback signal controls the barrier height between 
quantum dots (we assume ε=0) using the linear relation 
∆H/H=F ∆ϕ, where ∆ϕ is the phase difference between 
actual and desired quantum oscill ations of a qubit state. 
The normalization of KI(τ) is chosen in a way that the 
“perfect” signal I(t) = I0 + (∆I/2) cos Ωt  would correspond  
to oscill ations with amplitude equal to unity (here 
∆I=I1−I2 is the difference between average currents 
corresponding to qubit states |1> and |2>).  

In absence of the feedback control, F=0, the 
correlation function decays in time exponentially 
according to the qubit dephasing rate Γ= (∆I)2/4S, where S 

 

is the spectral density of the QPC shot noise. The Q-factor 
of oscill ations is determined by the coupling 
α≡

�
(∆I)2/8SH between the double-dot and QPC (Q=α−1=8 

in Fig. 1). As expected, the feedback synchronizes the 
quantum oscill ations leading to nonvanishing amplitude 
of KI(τ) at arbitrary long τ. This asymptotic ampli tude 
depends on the feedback strength and becomes close to 1 
in units of (∆I)2/8 (perfect oscill ations) at F>>α (see Fig. 
1). Analytical results obtained in this regime are in good 
agreement with numerical calculations. The nonvanishing 
oscill ations of KI(τ) lead to a δ-like peak in the spectral 
density of the detector current I(t) at the desired frequency 
Ω [which is chosen coinciding with (4H2+ε2)1/2/

�
] and 

also change the peak-like “pedestal” in comparison with 
the case without feedback [6]. It is interesting to notice 
that the value of KI(+0) which in absence of feedback is 
twice larger than for perfect oscill ations (see discussion of 
this nonclassical effect in [6]), does not change when the 
feedback control is applied.  

We have also studied the case of moderately 
large coupling, α~1, and confirmed the presence of long-
range order as revealed by the nonvanishing oscillations 
of KI(τ). The effect of extra dephasing due to environment 
and the suppression of this dephasing by using quantum 
feedback have been also studied quantitatively by 
analyzing correlation functions of the detector current and 
the qubit density matrix. 
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     Fig. 1. Correlation function KI(τ) of the QPC current 
I(t) in absence of quantum feedback (solid line) and for 
feedback strength F=0.03 (dotted line) and 0.3 (dashed 
line). The feedback loop maintains quantum oscill ations 
of the qubit state with frequency Ω=(4H2+ε2)1/2/ � .  


